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Quasi-synchronization of heterogeneous networks
with a generalized Markovian topology and
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Abstract—We consider the quasi-synchronization problem of a
continuous time generalized Markovian switching heterogeneous
network with time-varying connectivity, using pinned nodes that
are event-triggered to reduce the frequency of controller updates
and inter-node communications. We propose a pinning strategy
algorithm to determine how many and which nodes should be
pinned in the network. Based on the assumption that a network
has limited control efficiency, we derive a criterion for stability,
which relates pinning feedback gains, the coupling strength and
the inner coupling matrix. By utilizing the stochastic Lyapunov
stability analysis, we obtain sufficient conditions for exponen-
tial quasi-synchronization under our stochastic event-triggering
mechanism, and a bound for the quasi-synchronization error.
Numerical simulations are conducted to verify the effectiveness
of the proposed control strategy.

Index Terms—Quasi-synchronization, heterogeneous network,
generalized Markovian topology, event-triggered control.

I. INTRODUCTION

Complex dynamical networks are ubiquitous in nature and
in the modern world. A large variety of social and biological
systems, critical infrastructural and communications systems,
can be modeled and analyzed as complex networks [1]–[3]. In
many of these networks, the state of every network node needs
to be synchronized in order to drive the entire system to a
certain desired global state. For example, a government agency
may want to propagate important emergency coordination
information to everyone in an online social network. In a
power grid, every active component that generates power
should oscillate at the same frequency (50 Hz in Europe; 60
Hz in the US); otherwise, the system may lose its stability and
power imbalance may occur.

Synchronization of complex networks has attracted much
attention, see [4]–[7] and the references therein for more
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details. When the network cannot be stabilized or synchro-
nized by itself, one may apply control inputs to drive the
network to synchronization. In practice, driving the dynamics
of a network from any initial state to a final desired state
has many applications in different fields. In the literature,
many control strategies have been proposed to enable the
network to be stabilized. These include pinning control [8]–
[11], fuzzy control [12], impulsive control [13], and fixed-time
control [14], etc. As it is generally rather expensive, and not
necessary to impose controllers on all network nodes, pinning
control stands out as a good choice since it can be realized by
controlling only a subset of network nodes.

While most of the literature [3]–[13] have focused on
synchronization of identical nodes in networks, our paper deals
with synchronization in switching heterogeneous networks,
which widely exist in real-life applications. For example, local
area networks (LANs) that connect Microsoft Windows and
Linux based personal computers with Apple Macintosh com-
puters are heterogeneous [15]; in multiple robot manipulators
with Lagrangian dynamics, each manipulator has a different
inertia matrix due to distinct structures [16]. The existence of
heterogeneity may result in possible loss of synchronization
and makes synchronization in heterogeneous networks more
difficult and complicated. To the best of our knowledge,
there have been few satisfactory results on synchronization of
heterogeneous networks [17]–[22], not to mention the random
switching heterogeneous networks.

By assuming either that the non-identical nodes have a com-
mon equilibrium, or individual node dynamics tends to become
the same, complete synchronization can be achieved [17]–
[19], i.e., limt→∞ ∥xi(t) − s(t)∥ = 0, where xi(t) denotes
the state of the i-th node and s(t) is a certain reference
trajectory. However, in reality and for many practical cases,
mismatched parameters and other external factors always
imply that xi(t) − s(t) cannot approach zero with time.
The references [20]–[23] hence reported quasi-synchronization
among the non-identical nodes, which means that the defining
limit of synchronization is bounded within a region around
zero, i.e., limt→∞ ∥xi(t) − s(t)∥ ≤ ϖ, where ϖ > 0. It is
also called bounded synchronization in some cases. Recently,
[24] investigated the problem of quasi-synchronization for the
time-invariant heterogenous networks by applying distribut-
ed impulsive control. The paper [25] derived several quasi-
synchronization conditions for the time-varying switching
heterogeneous networks. However, how to design the quasi-
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synchronization condition and optimize the error bound of
quasi-synchronization for random switching heterogeneous
networks are open problems.

A complex dynamical network (homogeneous or heteroge-
neous) is a distributed system. Each agent only interacts with
neighboring agents. The topology graph is introduced merely
to model the interaction among nodes or agents in the whole
network. The changes of network topology can be interpreted
as changes in interactions among nodes. Investigators typically
model randomly switching network topologies as Markov
processes. For example, in a marine oil spill monitoring
system deployed over an ocean area, the topology of the
sensor network may switch, governed by a generalized Markov
process [26]. A comprehensive quasi-synchronization analysis
of a generalized Markovian switching heterogeneous network
is in demand, which provides the motivation of our current
study.

With the rapid development of data communication tech-
nologies and high performance computing, event-based con-
trol algorithms have been proposed to reduce information
exchange and computation loads in networked systems while
still maintaining satisfactory control performance [27]–[29].
Event-triggered control is particularly suitable for complex
networks with limited resources since it effectively reduces
the communication cost by executing the control task only
when an external event that violates a predetermined condition
on the output measurement occurs. An example of such a
control strategy is to trigger a node to transmit its local state
to its neighbors only when the estimated local node state
error exceeds a certain specific threshold value [30]. In some
recent publications [31]–[33], the authors investigated event-
triggered algorithms for pinning control of complex networks.
In [31], pinning exponential synchronization of complex net-
works via event-triggered communication with combinational
measurements was studied. In [32], sufficient conditions are
derived and exponential convergence of a global normed
error function is proven for the synchronization of time-
varying switching networks with uncoupled node dynamics.
The paper [33] employed an event-triggered strategy to achieve
good stability in coupled dynamical systems with Markovian
switching couplings and pinned node set. However, methods
for developing an event-triggered strategy to synchronize het-
erogeneous networks with generalized Markovian switching
topologies under pinning control, to the best of our knowledge,
have not been investigated.

In this paper, we consider the quasi-synchronization prob-
lem of heterogeneous networks with generalized Markovian
switching topologies and event-triggered communication. The
main contributions of this paper can be outlined as follows:

1) In contrast to the majority of recent publications on
synchronization and consensus of identical networked
systems, this paper investigates stochastic heterogeneous
dynamic networks, which are widely applicable in real-
life situations. A heterogeneous network is established
to model nonidentical nodes and data sampling within
a unified framework where the network topology is
governed by a generalized Markov process.

2) To solve the challenging problem of pinning heteroge-
neous networks with generalized Markovian switching
topologies, an algorithm (cf. Algorithm 1) is proposed
to identify the number and locations of the network
nodes that need to be pinned in a heterogeneous network.
Taking into account the restriction of control efficiency,
a criterion (cf. Corollary 1) is proposed to show the
relationship between pinning feedback gains, the coupling
strength and the inner coupling matrix.

3) By utilizing multiple Lyapunov functionals, with the
help of stochastic Lyapunov-Krasovskii stability analysis
and matrix inequalities technique, two sufficient criteria
(cf. Theorem 1 and Corollary 2) are derived such that
the heterogeneous networks with generalized Markovian
switching topologies can achieve quasi-synchronization
exponentially under our stochastic event-triggering mech-
anism. We also provide an explicit quasi-synchronization
error bound.

The rest of this paper is organized as follows. In Sec-
tion II, we present our problem statement and some technical
preliminaries. Our main theoretic framework and proofs are
presented in Section III. Numerical examples and simulations
are presented in Section IV to verify the proposed results.
Finally, Section V concludes the paper.

Notation: The following notations are used throughout this
paper. Let ⊗ be the Kronecker product. N denotes the set of
non-negative integers, and R+ is the set of non-negative real
numbers. We use Rn to denote the n dimensional Euclidean
space and Rm×n the set of all m× n matrices. F (θ−) stands
for the left limit of a function F (θ) at θ. We let I be the identi-
ty matrix with the proper dimensions. Let ∥x∥ and ∥A∥ be the
Euclidean norm of a vector x and a matrix A, respectively. The
superscripts T and −1 denote matrix transposition and matrix
inverse, respectively. Let He{A} = A + AT be a symmetric
matrix. For a symmetric block matrix, we use ⋆ to denote the
terms due to symmetry. X ≺ Y (X ≻ Y ), where X and Y
are both symmetric matrices, means that X − Y is negative
(positive) definite. C([−hm, 0],RNn) denotes the family of
continuous function f from [−hm, 0] to RNn with the norm
|f | = sup−hm≤µ≤0 ∥f(µ)∥. Finally, P and E denote the
probability measure and mathematical expectation operator,
respectively, of an underlying probability space, which will
be clear from the context.

II. PROBLEM FORMULATION

A. Graph notations

Let G = (V, E,A) be a weighted digraph of order N with
the set of nodes V = {1, 2, · · · , N}, set of directed edges
E ⊂ V ×V , and a weighted adjacency matrix A = [aij ]N×N .
A directed graph G contains a directed spanning tree if there
exists a node r, called a root, such that there exists a directed
path from this node to every other node q, i.e., node q is
reachable from root r. An edge in the graph G is denoted by
(i, j) where (i, j) means that node j can receive information
from node i. The neighboring set of node i is denoted by
Ni = {j ∈ V : (j, i) ∈ E}. A path from node j to node i is a
sequence of edges, (j, i1), (i1, i2), · · · , (ip, i), with distinct



3

nodes ik, k = 1, 2, · · · , p. The elements of the adjacency
matrix A = [aij ]N×N are defined as follows: the weight
aij > 0 if and only if (j, i) ∈ E, and aij = 0 otherwise.
Moreover, we assume that the graph contains no self-loops,
i.e., aii = 0 for all i = 1, 2, · · · , N . The Laplacian matrix
L = [lij ]N×N associated with the adjacency matrix A is
defined by lii =

∑N
k=1,k ̸=i aik, and lij = −aij for i ̸= j.

B. Problem formulation

Consider a heterogeneous complex network with a general-
ized Markovian switching topology. Node i has the following
state equation:

ẋi(t)=Bixi(t)+f(xi(t), t)+c
N∑
j=1

aij(r(t))Γ(xj(t)−xi(t)),

i = 1, 2, · · · , N, (1)

where xi(t) ∈ Rn is its state, f(xi(t), t) is a contin-
uous vector-valued function, and r(t) is a discrete-state
stochastic process taking values in a finite set S =
{1, 2, · · · ,M}, which will be specified later. The matrices
Bi, i = 1, 2, · · · , N are constant matrices of appropriate
dimensions. The positive constant c is the coupling strength,
and 0 ≺ Γ = diag{α1, α2, · · · , αn} ∈ Rn×n denotes an
inner-coupling matrix of the heterogeneous network. The
matrix A(r(t)) = [aij(r(t))]

N
i,j=1 ∈ RN×N represents the

outer coupling configuration with mode switching. We con-
sider the switching complex network in an induced graph
G(r(t)) = (V, E(r(t)), A(r(t))): for each pair of nodes i ̸= j,
aij(r(t)) > 0 if and only if (j, i) ∈ E(r(t)) at time t;
otherwise aij(r(t)) = 0.

In this paper, consider a complete filtered probability space
{Ω,F , {Ft}t≥0,P}, where Ω is the sample space, F is a
σ-algebra of events, P is a probability measure defined on
F , and {Ft}t≥0 is a filtration satisfying the usual conditions
(i.e., it is increasing and right continuous while the σ-algebra
F0 contains all P-null sets from F ). Let S = {1, 2, · · · ,M}
be a finite state space. On the complete filtered probability
space {Ω,F , {Ft}t≥0,P}, r(t) is a stochastic process with
discrete states in a finite set S and the transition probabilities
are defined as quv(t, s) , P (r(t+ s) = v | r(t) = u ).

Under the continuity condition lims→0+ quv(t, s) = δuv,
where δuv is the Kronecker delta function, we have that

lim
s→0+

1− quu(t, s)

s
=−πuu <∞, lim

s→0+

quv(t, s)

s
= πuv <∞,

where πuv ≥ 0, u, v ∈ S, u ̸= v, is the transition rate from
mode u to v and πuu = −

∑N
v=1,v ̸=u πuv.

We suppose that observations are made at the sampling
instants Tk, k ≥ 1. Then we have

P
(
r(Tk) = v|r(T−

k ) = u
)

= quv(T
−
k , 0

+) =

{
πuv, u ̸= v
1 + πuu, u = v

(2)

where T−
k stands for the left limit of Tk.

Remark 1. It is worth mentioning that the stochastic process
r(t) in this paper is a direct generalization of the traditional

Markov process [34]. If we consider a process that is only
defined at the sampling instants, from (2) it can be seen that
the process is a standard discrete-time Markov process. If we
consider t ∈ [Tk, Tk+1), the switching rate πuv is defined over
the whole time horizon, and thus becomes identical with the
definition for the standard continuous-time Markov process.

Remark 2. The probabilistic behavior of the network topology
has indicated that the controller for the heterogeneous network
will be switched from the instants T−

k to Tk, and remains
unchanged over each sampling interval. In contrast to the
previous synchronization strategy of switching networks [35]–
[37], our strategy may be easier to be implemented since the
control only needs to be updated at switching instants. As we
shall discuss in Section II-C, the event-triggering mechanism
with stochastic sampling significantly decreases the amount
of communications between different nodes in a switching
heterogeneous network.

Remark 3. Let yi(t) be the output signal of the i-th n-
ode, which has a state-space equation described by (1). A
typical output feedback control strategy can be expressed as
ui(t) =

∑N
j=1 aij(r(t))Γ(yj(t)−yi(t)). Yet it requires careful

studies to incorporate the event-triggering mechanism into
the output feedback control and to design the effective event
detector. However, in this paper we adopt the pinning control
design of state feedback, then propose an event-triggered
and pinning strategy to effectively reduce the frequency of
controller updates and inter-node communications.

Remark 4. The generalized Markovian switching hetero-
geneous network is said to achieve output synchronization
asymptotically if limt→∞ ∥yi(t) − yj(t)∥ = 0, for i, j =
1, 2, · · · , N . It should be noticed that output synchronization
of the generalized Markovian switching heterogeneous network
depends on non-identical dynamics of the nodes, and the struc-
tural topology governed by the stochastic process r(t), which
impose the main obstacles for output synchronization. To the
best of our knowledge, there are no existing results on event-
triggered output synchronization problem for the generalized
Markovian switching heterogeneous networks, but the output
synchronization of homogeneous or heterogeneous networks
has been well investigated in [38]–[40]. However, in this paper
we focus on the event-triggered quasi-synchronization problem
of (1), and the event-triggered output synchronization problem
will be studied in our future work.

In this paper, we define a virtual leader node labeled as
N+1. By introducing directed edges in the form of (N+1, i),
i ∈ V , to G = (V, E,A), one obtains a graph G̃ = (Ṽ, Ẽ, Ã),
known as the augmented graph of G = (V , E,A). We assume
that the dynamics of node N + 1 is given by

ṡ(t) = Bs(t) + f(s(t), t). (3)

where s(t) may be an equilibrium point, a periodic orbit, or
even a chaotic orbit. Throughout this paper, we assume that
s(t) is bounded, i.e., for any initial condition s(0), there exist
T (s(0)) and δ > 0, such that ∥s(t)∥ ≤ δ, ∀t > T (s(0)).
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Assumption 1. The augmented graph G̃ = (Ṽ, Ẽ, Ã) contains
a directed spanning tree with the virtual node N + 1 being
the root.

Since the network (1) and the virtual leader (3) have
individual dynamic properties, such a heterogeneous network
cannot achieve synchronization from the traditional point of
view [21]. We define a more general synchronization concept,
called quasi-synchronization, as follows.

Definition 1. [24] The heterogeneous dynamic network (1)
is said to achieve quasi-synchronization with an error bound
ϖ > 0, if there exists a compact set M such that, for any
xi(0), s(0) ∈ Rn, the error signal ei(t) = xi(t) − s(t)
converges into the set M = {ei(t) ∈ Rn : ∥ei(t)∥ ≤ ϖ}
as t→ ∞.

Throughout this paper, suppose that the event-triggered
instants for the node i are ti0, t

i
1, · · · , which will be determined

by the proposed event detector (cf. Section II-C). Incorporating
the event-triggering mechanism in (1), we design an event-
triggered and pinning strategy as follows

ẋi(t)=Bixi(t)+f(xi(t), t)+cai0(r(t))Γ(s(t
i
k)− xi(t

i
k))

+ c
N∑
j=1

aij(r(t))Γ(xj(t
i
k)−xi(tik)), (4)

where k = 0, 1, 2, · · · , i = 1, 2, · · · , N . Without loss of gener-
ality, suppose that ti0 = 0 for i = 1, 2, · · · , N . Let Vpin(r(t)) =
{i1(r(t)), · · · , il(r(t))} be the set of pinned nodes. If i ∈
Vpin(r(t)), ai0(r(t)) > 0; otherwise ai0(r(t)) = 0. Further-
more, we define A0(r(t)) = diag{a10(r(t)), · · · , aN0(r(t))}.

In the following, we present some assumptions and lemmas,
which will be used to derive our main results.

Assumption 2. The continuous vector-valued function f(·) =
[fT1 (·), fT2 (·), · · · , fTn (·)]T ∈ Rn in (1) is globally Lipschitz,
i.e., ∥fi(x, t)− fi(y, t)∥ ≤ γi∥x(t)−y(t)∥, for any x, y ∈ Rn

and γi > 0 for i = 1, 2, · · · , N .

It should be mentioned that Assumption 2 holds when
the Jacobian matrix [∂f∂x ]n×n is uniformly bounded, which is
the case for a number of well-known complex systems and
complex networks, such as Chua’s circuit [41], chaotic delayed
system [42], neural networks [43], etc.

Lemma 1. [44] For any vector x ∈ Rn, y ∈ Rn and
symmetric positive definite matrix W with proper dimensions,
then 2xT y ≤ xTW−1x+ yTWy.

Lemma 2. [45] For any constant matrix 0 ≺ R ∈ Rn×n, a
scalar function τ(t) with 0 < τ(t) ≤ τ̄ and vector function
ẋ : [−τ̄ , 0] → Rn such that the integration concerned is well
defined, let

∫ t

t−τ(t)
ẋ(s)ds = Eψ(t), where the matrix E ∈

Rn×k and ψ(t) ∈ Rk. Then the following inequality holds:

−
∫ t

t−τ(t)

ẋT (s)Rẋ(s)ds ≤ ψT (t)Υ1ψ(t),

where Υ1 = −ETG−GTE+ τ(t)GTR−1G and G ∈ Rn×k.

C. Event-triggered control

In this subsection, the corresponding well-defined triggering
condition is proposed and the error equations are derived by
utilizing an event-triggered and pinning strategy.

Consider the sampling instants 0 = T0 < T1 < T2 <
· · · < Tk < · · · over the stochastic process r(t). Obviously,
the sampling period Tk+1 − Tk is stochastic. In this paper we
assume that the sampling period Tk+1−Tk takes its value in a
finite set {h1, h2, · · · , hm}, where 0 = h0 < h1 < · · · < hm,
m ≥ 1. At sampling instant Tk, for the i-th node in the
heterogeneous network (1) the event detector is defined as

δTi (Tk)δi(Tk) > σiz
T
i (Tk)zi(Tk), (5)

where the measurement error δi(Tk) is the difference between
the state of the i-th node at the current sampled instant and the
last event-triggered instant, i.e., δi(Tk) = xi(Tk) − xi(t̂

i
k) ∈

Rn, with t̂ik = max{til : l ≥ 0, til < Tk} being the latest
event-triggered instant before Tk for the i-th node. In addition,
σi > 0 is a threshold parameter and

zi(Tk) = c
N∑
j=1

aij(r(Tk))Γ(xj(Tk)− xi(Tk))

+ cai0(r(Tk))Γ(s(Tk)− xi(Tk)).

If the condition (5) is satisfied at sampling instant Tk, an
event is triggered for the i-th node, and the new event-
triggered instant will be Tk. At the same time, δi(Tk) will be
reset to zero. For the i-th node, the event-triggered intervals
ti1 − ti0, ti2 − ti1, · · · , tik+1 − tik, · · · will not be shorter than
hmin > 0, where hmin = minm∈N+{h1, h2, · · · , hm}. Hence,
the positive lower-bound on the event-triggered intervals is
obtained to guarantee that there is no Zeno behaviour existing
in the proposed event-triggered scheme.

Remark 5. Note that the event-triggered instants tik (k =
0, 1, 2, · · · ) belong to the set {0, T1, · · · , Tk, · · · }, and the
number of control actuation updates may be less than that
with traditional sampled-data control. However, it should be
pointed out that if the sampling period Tk+1−Tk is relatively
large or the parameter σi is too small, then the event might be
triggered at each sampling instant. Besides, it is obvious that
the event-triggered strategy becomes a time-triggered strategy
when σi = 0.

Considering the definitions of xi(t̂ik) and δi(Tk), we know
that if the event for the i-th node is not triggered at the instant
Tk, then tik = t̂ik and xi(t

i
k) = xi(Tk) − δi(Tk); otherwise,

tik = Tk, and δi(Tk) is reset to zero, i.e., δi(Tk) = 0.
Hence, xi(tik) = xi(Tk) − δi(Tk) holds for all time. For
t ∈ [Tk, Tk+1), k = 0, 1, 2, · · · , the heterogeneous network
(4) can then be changed into

ẋi(t) = Bixi(t) + f(xi(t), t) + c

N∑
j=1

aij(r(Tk))

× Γ[xj(Tk)−δj(Tk)−(xi(Tk)−δi(Tk))]
+ cai0(r(Tk))Γ[s(Tk)− (xi(Tk)− δi(Tk))], (6)
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where i = 1, 2, · · · , N . Let ei(t) = xi(t) − s(t), i =
1, 2, · · · , N . Accordingly, when r(Tk) = u ∈ S, we can obtain
the following error system:

ėi(t) = Biei(t) + fe(ei(t), t)

+ c
N∑
j=1

aij(u)Γ[xj(Tk)−δj(Tk)−(xi(Tk)−δi(Tk))]

+ cai0(u)Γ[s(Tk)−(xi(Tk)−δi(Tk))] + (Bi−B)s(t),
(7)

where fe(ei(t), t) = f(xi(t), t)− f(s(t), t).
Additionally, we have that

N∑
j=1

aij(u)[xj(Tk)− xi(Tk)]

= −
N∑

j=1,j ̸=i

lij(u)xj(Tk)− liixi(Tk)

=−
N∑
j=1

lij(u)[xj(Tk)−s(Tk)+s(Tk)]=−
N∑
j=1

lij(u)ej(Tk),

where lij(u) denotes the elements of the Laplacian matrix
L(u) in the heterogeneous network, i.e., L(u) = [lij(u)]N×N ,
and ej(Tk) represents the synchronization error for node j at
the instant Tk.

Define W (s(t)) = [wT
1 (s(t)), w

T
2 (s(t)), · · · , wT

N (s(t))]T ,
and supt>T (s(0)) ∥wi(s(t))∥ = φi, i = 1, 2, · · · , N ,
where wi(s(t)) = (Bi − B)s(t). Then let e(t) =
[eT1 (t), e

T
2 (t), · · · , eTN (t)]T and

e(Tk) = [eT1 (Tk), e
T
2 (Tk), · · · , eTN (Tk)]

T ,

δ(Tk) = [δT1 (Tk), δ
T
2 (Tk), · · · , δTN (Tk)]

T ,

Fe(e(t), t) = [fTe (e1(t), t), · · · , fTe (eN (t), t)]T .

For t ∈ [Tk, Tk+1), k = 0, 1, 2, · · · and u ∈ S, by the property
of Kronecker product, the error system (7) can be rewritten in
compact form as

ė(t) = Be(t) + Fe(e(t), t)− c(H(u)⊗ Γ)e(Tk)

+ c(H(u)⊗ Γ)δ(Tk) +W (s(t)), (8)

where B = diag{B1, B2, · · · , BN}, H(u) = L(u) +A0(u).
Based on the above discussions, we introduce τ(t) = t−Tk

to the error system (8), then we have

ė(t) = Be(t) + Fe(e(t), t)− c(H(u)⊗ Γ)e(t− τ(t))

+ c(H(u)⊗ Γ)δ(t− τ(t)) +W (s(t)), (9)

where t ∈ [Tk, Tk+1), k = 0, 1, 2, · · · .
Consider τ(t) = t− Tk ∈ [0, Tk+1 − Tk) and the sampling

period Tk+1−Tk takes values in a finite set {h1, h2, · · · , hm}.
We have that τ(t) can be divided into m segments, i.e., τ1(t) ∈
[0, h1), τ2(t) ∈ [h1, h2), · · · , τm(t) ∈ [hm−1, hm). Hence the
following stochastic variables are defined for l = 1, 2, · · · ,m,

βl(t) =

{
1, hl−1 ≤ τl(t) < hl
0, otherwise

and P{βl(t) = 1} = P{hl−1 ≤ τl(t) < hl} = βl, where βl ∈
(0, 1) and

∑m
l=1 βl = 1. Moveover, E[βl(t)] = βl, E[βl(t) −

βl]
2 = βl(1− βl). Thus the error system (9) can be changed

into

ė(t)=Be(t)+Fe(e(t), t)−
m∑
l=1

βl(t)(c(H(u)⊗ Γ))e(t−τl(t))

+
m∑
l=1

βl(t)(c(H(u)⊗ Γ))δ(t− τl(t)) +W (s(t)),

(10)

where t ∈ [Tk, Tk+1), and hl−1 ≤ τl(t) < hl, l =
1, 2, · · · ,m. Meanwhile, the initial condition of e(t) is
supplied as e(t) = ψ(t) for t ∈ [−hm, 0]. ψ(t) ∈
L2

F0
C([−hm, 0],RNn), which is to denote the family of all

F0-measurable C([−hm, 0],RNn)-valued random variables
satisfying sup−hm≤µ≤0 E(∥f(µ)∥2) <∞.

III. MAIN RESULTS

A. Pinning strategy

In this subsection, a search algorithm with a linear time
complexity is proposed for choosing the nodes to be pinned in
heterogeneous network (4). Some related approaches on pin-
ning synchronization with deterministic switching have been
provided for homogeneous networks in [46], [47]. However,
when it comes to heterogeneous networks with stochastic
switching, methods on pinning synchronization have not been
properly investigated yet. In this paper, we propose a pinning
strategy algorithm to determine how many and which nodes
should be pinned for random switching heterogeneous net-
works such that Assumption 1 holds.

It is assumed that the stochastic switching among the differ-
ent topologies is triggered by the sudden loss or recovery of
communication links, and there is no node that will be deleted
from the heterogeneous network. For r(t) = u ∈ S and t ∈
[Tk, Tk+1), let G(u) = (V(u), E(u), A(u)) be the communica-
tion topology in mode u. The set Vpin(u) = {i1(u), · · · , il(u)}
of pinned nodes is searched on a generalized Markovian
switching topology of heterogeneous network by the following
procedures. Namely, Assumption 1 will be satisfied if these
l(u) nodes searched by the following Algorithm 1 are selected
and pinned in the heterogeneous network.

Algorithm 1 Pinning nodes search algorithm
1) For G(u), find out all the nodes with zero in-degree and

strongly connected components. Assume that there are
o1(u)(o1(u) ≥ 0) nodes with zero in-degree, labeled as
i1(u), i2(u), · · · , io1(u), and o2(u)(o2(u) ≥ 0) strongly con-
nected components, represented by G(V1(u), E1(u), A1(u)),
· · · , G(Vo2(u), Eo2(u), Ao2(u)) in G(u). Set l(u) = 0 and
g(u) = 1.

2) All the o1(u) nodes with zero in-degree should be selected and
pinned. Then update the value l(u) by l(u) = l(u) + o1(u). If
o2(u) = 0, stop; else go to step 3).

3) Check whether there exists at least one node in Vg(u) which is
reachable from a node belonging to the node set V \ Vg(u). If
there exist such nodes, go to step 4); otherwise, go to 5).

4) If g(u) < o2(u), let g(u) = g(u) + 1 and re-perform step 3);
otherwise stop.

5) Arbitrarily choose one node in Vg(u) to be pinned, update the
value of l(u) by l(u) = l(u) + 1. Then re-perform step 4).
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The objective of Algorithm 1 is to choose appropriate
pinning nodes to guarantee that the augmented graph G̃(u) =
(Ṽ, Ẽ(u), Ã(u)) contains a directed spanning tree with the
virtual node N + 1 as the root. In other words, if there are
fewer than l(u) nodes in G(u) = (V(u), E(u), A(u)) that are
selected and pinned, then it can be checked that there exists at
least one node in G(u) which is not reachable by the virtual
node N + 1.

Remark 6. The proposed Algorithm 1 belongs to the classical
pinning control approach requiring centralized knowledge of
the network topology to detect whether there are possible cou-
pling and control gains ensuring pinning controllability [48].
Actually, the virtual leader node s(t) may be regarded as
playing the role of the central controller that is capable of
monitoring the change of network topology and deciding on
the selection of the corresponding pinning nodes in the under-
lying topology structure. The nodes in heterogeneous networks
may not need to have such kind of global information, though
they may need to report the local information to the virtual
leader node for composing the global information and making
decisions. Distributed pinning schemes and their designs are
out of the scope of this paper, and will be investigated in our
future studies.

Next, we present a simple example to demonstrate how to
find the pinning nodes in a given directed graph with Marko-
vian switching such that the virtual node N + 1 has a path
to every other nodes. Given a finite state space S = {1, 2, 3},
as illustrated in Fig. 1, the network G(V, E(1), A(1)) contains
11 nodes and node 12 is a virtual leader. According to step
1 in Algorithm 1, it can be seen that there are two nodes
7 and 11 with zero in-degree, and two strongly connected
components. The algorithm thus goes to step 2, where node
7 and node 11 are pinned. By the remainder steps, it can
be obtained that two distinct nodes arbitrarily selected from
node sets {1, 2, 3, 4} and {8, 9, 10} respectively should be
pinned. Assume we select node 4 and node 8. The pinning
set Vpin(1) = {4, 7, 8, 11} guarantees that the virtual node
12 has a path to every node. Similarly, Vpin(2) = {3, 7, 9}
and Vpin(3) = {3, 6, 9, 10, 11} as shown in Fig. 2 and Fig. 3,
respectively.

12

1

4

2

3

5 6

7

8

9 10

11

Fig. 1. Pinning strategy of a heterogeneous Markovian switching network in
mode “1”.

Therefore, given the network topology graph in mode
u ∈ S, the pinning set Vpin(u) = {i1(u), · · · , il(u)} can be

1

3

2

4

8

5

7

6

9

10 11

12

Fig. 2. Pinning strategy of a heterogeneous Markovian switching network in
mode “2”.

1

34

2

11

5

7

6

10

9

8

12

Fig. 3. Pinning strategy of a heterogeneous Markovian switching network in
mode “3”.

determined by the proposed algorithm. Next, we consider the
strategy for imposing pinning feedback gains over the pinning
nodes i1(u), · · · , il(u).

B. The strategy of pinning feedback gains

In this subsection, an efficiency restriction method is em-
ployed to obtain the proper pinning feedback gains ai10(u),
ai20(u), · · · , ail0(u) for the selected pinning nodes i1(u),
i2(u), · · · , il(u), where u ∈ S = {1, 2, · · · ,M}. A condition
is proposed for properly selecting the coupling strength and
the inner coupling matrix.

Considering the constraint of control efficiency widely
existing in many applications, we propose a hypothesis that
the heterogeneous network has limited control efficiency [49],
which follows∑

ik(u)∈Vpin(u)

aik0(u) = E0, u ∈ S = {1, 2, · · · ,M}. (11)

Motivated by the result of [49], to find the pinning feedback
gains with a fixed control efficiency E0, we can obtain the
feasible solution that

ai10(u) = ai20(u) = · · · = ail0(u) =
E0

l(u)
, d(u).

Remark 7. We assume that a switching heterogeneous net-
work may have fixed control efficiency E0 in practice. Subject
to such a constraint, we consider the case where all selected
pinning nodes have an identical feedback gain E0

l(u) . In [49],
It has been proven that the average distributed solution can
be feasible and it may be the optimal pinning feedback gain
under certain conditions.
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Without loss of generality, we rearrange the order of nodes
in the network such that the pinned nodes i1(u), · · · , il(u) are
the first l(u) nodes in the rearranged network. Then we have

A0(u) = diag{d(u), · · · , d(u)︸ ︷︷ ︸
l(u)

, 0, · · · , 0︸ ︷︷ ︸
N−l(u)

}.

It is well known that the synchronization behavior of
network may be sensitive to the inner coupling matrix and
the coupling strength, which should not be too large or too
small for achieving synchronization in the network. One has
to carefully design the coupling strength and the inner coupling
matrix. Next we present a criterion on selecting the coupling
strength c and inner coupling matrix Γ under limited control
efficiency.

For simplicity, we assume that Bi = B for i = 1, 2, · · · , N
in the equation (1). Then we can obtain that

ėi(t)=Bei(t)+fe(ei(t), t)−c
N∑
j=1

lij(u)Γej(t)−cai0(u)Γei(t),

(12)

where u ∈ S, fe(ei(t), t) = f(xi(t), t)− f(s(t), t).

Corollary 1. Suppose that γ̄ = max{γ1, · · · , γN}, where
γ1, · · · , γN are defined in Assumption 2, the error network
(12) under limited control efficiency can be stable if the
coupling strength c and inner coupling matrix Γ are selected
to satisfy the following inequalities(
λmax{

1

2
He(B)}+γ̄

)
IN−cαj

[
1

2
He(L(u))+A0(u)

]
≺0,

(13)

for all j = 1, 2, · · · , n, u ∈ S.

Proof. The proof is reported in Appendix A for the sake of
legibility.

Remark 8. It should be mentioned that Corollary 1 is a suffi-
cient condition under which the special case of heterogeneous
network can be stable. In a sense, it has provided a way to
properly choose the coupling strength c and the inner coupling
matrix Γ for given pinning feedback gains.

C. Quasi-synchronization analysis

In this subsection, the sufficient conditions are established
to guarantee quasi-synchronization behavior for the heteroge-
neous network with a generalized Markovian topology.

Theorem 1. Suppose the generalized Markovian switching
heterogeneous network has limited control efficiency E0 gov-
erned by (13). For given scalars σi > 0, φi > 0, hl > 0,
βl ∈ (0, 1) and

∑m
l=1 βl = 1, where i = 1, 2, · · · , N ,

l = 1, 2, · · · ,m, under Assumption 1 and Assumption 2, the
trajectory of the error system (10) converges exponentially into
a ball M at a convergence rate θ, where M = {e(t) ∈ RNn :

∥e(t)∥ ≤ ϖ} as t → ∞, ϖ =
√

κ
∑N

i=1 φ2
i

2θκ , if there exist
positive definite matrices P (u) ≻ 0, R(u) ≻ 0, u ∈ S, Ql ≻ 0,

Xl ≻ 0, Yl ≻ 0, and matrices J1l, J2l with appropriate
dimensions such that

Ω(u) +
m∑
l=1

βlϑlJ
T
1lX

−1
l J1l +

m∑
l=1

βlϑlJ
T
2lY

−1
l J2l ≺ 0, (14)

for all u ∈ S, ϑl = e−2θhl(hl − hl−1) and

Ω(u) = ZT
1

[ M∑
v=1

πuvP (v)+γ̄I+2θP (u)+β1Q1+P (u)

×R−1(u)P (u)
]
Z1 +He

{
ZT
1 P (u)Π(u)−

m∑
l=1

βle
−2θhl

× (Zl+1 − Zm+l+1)
TJ1l −

m∑
l=2

βle
−2θhl(Zm+l − Zl+1)

T

× J2l − β1(Z1 − Z2)
TJ21

}
− β1e

−2θh1ZT
m+2Q1Zm+2

+
m∑
l=2

βle
−2θhl−1ZT

m+lQlZm+l−
m∑
l=1

βlZ
T
2m+l+1Z2m+l+1

−
m∑
l=2

βle
−2θhl−1ZT

m+l+1QlZm+l+1 − ZT
3m+2Z3m+2

+
m∑
l=1

βlZ
T
l+1((H

T (u)ΛH(u))⊗ Γ)Zl+1

+
m∑
l=1

βl(hl − hl−1)Π
T (u)(Xl + Yl)Π(u), Π(u) = B(u)

× Z1+Z3m+2+
m∑
l=1

βl(cH(u)⊗ Γ)(Z2m+l+1 − Zl+1),

where Zk = [0, · · · , 0, INn, 0, · · · , 0] ∈ RNn×(3m+2)Nn is a
block matrix with 3m+2 block elements, in which the kth block
element is INn and the other block elements are zero matrices.
Moreover, κ = λmax,u∈S{R(u)}, κ1 = λmin,u∈S{P (u)}, κ2 =
λmin{Ql}, κ3 = λmin{Xl}, κ4 = λmin{Yl} and

Λ = diag{σ1, σ2, · · · , σN} ∈ RN×N ,

κ = κ1 +
m∑
l=1

βlϑl[κ2 +
1

2
(hl + hl−1)(κ3 + κ4)].

Proof. Consider the following Lyapunov functional candidate

V (e(t), t, u) = V1(e(t), t, u) + V2(e(t), t, u) + V3(e(t), t, u),
(15)

where u ∈ S, t ∈ [Tk, Tk+1), V1(e(t), t, u) = eT (t)P (u)e(t),
V2(e(t), t, u) =

∑m
l=1 βl

∫ t−hl−1

t−hl
e2θ(s−t)eT (s)Qle(s)ds and

V3(e(t), t, u) =
∑m

l=1 βl
∫ −hl−1

−hl

∫ t

t+µ
e2θ(s−t)ėT (s)(Xl +

Yl)ė(s)dsdµ.
Let L be the weak infinitesimal operator of the Lyapunov

functional V (e(t), t, u). Based on the definition of infinitesi-
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mal operator [50], along the trajectory of (10) we obtain that
L V (e(t), t, u) =

∑3
k=1 L Vk(e(t), t, u) and

L V1(e(t), t, u)=

M∑
v=1

πuve
T (t)P (v)e(t)−2θV1(e(t), t, u)

+ 2θeT (t)P (u)e(t) + 2eT (t)P (u)
{
B(u)e(t)

+ Fe(e(t), t)−
m∑
l=1

βl(t)(cH(u)⊗ Γ)e(t− τl(t))

+
m∑
l=1

βl(t)(cH(u)⊗ Γ)δ(t− τl(t)) +W (u, s(t))
}
,

(16)

L V2(e(t), t, u)=
m∑
l=1

βl
[
e−2θhl−1eT (t− hl−1)Qle(t− hl−1)

− e−2θhleT (t− hl)Qle(t− hl)
]
− 2θV2(e(t), t, u),

(17)

L V3(e(t), t, u) =
m∑
l=1

βl(hl − hl−1)ė
T (t)(Xl + Yl)ė(t)

−
m∑
l=1

βl

∫ t−hl−1

t−hl

e2θ(s−t)ėT (s)(Xl + Yl)ė(s)ds

− 2θV3(e(t), t, u). (18)

Define

ξ(t) = [eT (t), eT (t− τ1(t)), · · · , eT (t− τm(t)),

eT (t− h1), · · · , eT (t− hm), δT (t− τ1(t)), · · · ,
δT (t− τm(t)), FT

e (e(t), t)]T .

According to Lemma 2, we can obtain that

−
m∑
l=1

βl

∫ t−hl−1

t−hl

e2θ(s−t)ėT (s)(Xl + Yl)ė(s)ds

≤ ξT (t)
{ m∑

l=1

βlϑlJ
T
1lX

−1
l J1l +

m∑
l=1

βlϑlJ
T
2lY

−1
l J2l

−
m∑
l=1

βle
−2θhl He{(Zl+1 − Zm+l+1)

TJ1l}

−
m∑
l=2

βle
−2θhl He{(Zm+l − Zl+1)

TJ2l}

−He{β1JT
21(Z1 − Z2)}

}
ξ(t). (19)

Therefore, combining (16)-(19), we have

L V (e(t), t, u) ≤ L V1(e(t), t, u) + L V2(e(t), t, u)

+ ξT (t)
{ m∑

l=1

βlϑlJ
T
1lX

−1
l J1l +

m∑
l=1

βlϑlJ
T
2lY

−1
l J2l

−
m∑
l=1

βle
−2θhl He{(Zl+1 − Zm+l+1)

TJ1l}

−
m∑
l=2

βle
−2θhl He{(Zm+l − Zl+1)

TJ2l}

−He{β1JT
21(Z1 − Z2)}

}
ξ(t)− 2θV3(e(t), t, u)

+

m∑
l=1

βl(hl − hl−1)ė
T (t)(Xl + Yl)ė(t)

=−2θV (e(t), t, u)+

m∑
l=1

βl(hl − hl−1)ė
T (t)(Xl + Yl)ė(t)

+ ξT (t)Θ(u)ξ(t) + 2eT (t)P (u)W (u, s(t)), (20)

where

Θ(u) =
m∑
l=1

βlϑlJ
T
1lX

−1
l J1l +

m∑
l=1

βlϑlJ
T
2lY

−1
l J2l

+ ZT
1

[ M∑
v=1

πuvP (v) + 2θP (u)
]
Z1 + β1Z

T
1 Q1Z1

− β1e
−2θh1ZT

m+2Q1Zm+2 +

m∑
l=2

βle
−2θhl−1ZT

m+lQlZm+l

−
m∑
l=2

βle
−2θhl−1ZT

m+l+1QlZm+l+1+He
{
ZT
1 P (u)Z3m+2

+

m∑
l=1

βl(t)Z
T
1 P (u)(cH(u)⊗ Γ)(Z2m+l+1 − Zl+1)

−
m∑
l=1

βle
−2θhl(Zl+1 − Zm+l+1)

TJ1l − β1(Z1 − Z2)
TJ21

−
m∑
l=2

βle
−2θhl(Zm+l − Zl+1)

TJ2l

}
.

According to Lemma 1, it follows that

2eT (t)P (u)W (u, s(t))

≤eT (t)P (u)R−1(u)P (u)e(t)+WT (u, s(t))R(u)W (u, s(t))

≤ eT (t)P (u)R−1(u)P (u)e(t) + λmax,u∈S{R(u)}
N∑
i=1

φ2
i .

(21)

Considering the event-triggering condition (5), it can be
obtained that

ξT (t)
[ m∑

l=1

βlZ
T
l+1((H

T (u)ΛH(u))⊗ Γ)Zl+1

−
m∑
l=1

βlZ
T
2m+l+1Z2m+l+1

]
ξ(t) ≥ 0. (22)

Considering the Assumption 2 with respect to vector-valued
function f(·), we have

ξT (t)(γ̄ZT
1 Z1 − ZT

3m+2Z3m+2)ξ(t) ≥ 0. (23)

Based on the equation (20), with the aid of (10) and (21)-(23),
we can obtain that

E{L V (e(t), t, u)}≤−2θE{V (e(t), t, u)}+
m∑
l=1

βl(hl−hl−1)

×E{ėT (t)(Xl + Yl)ė(t)}+ E{ξT (t)Θ(u)ξ(t)}
+ E{2eT (t)P (u)W (u, s(t))}
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≤ −2θE{V (e(t), t, u)}+ κ

N∑
i=1

φ2
i + E

{
ξT (t)[Ω(u)

+
m∑
l=1

βlϑlJ
T
1lX

−1
l J1l+

m∑
l=1

βlϑlJ
T
2lY

−1
l J2l]ξ(t)

}
. (24)

By (14), it follows that

E{L V (e(t), t, u)} ≤ −2θE{V (e(t), t, u)}+ κ
N∑
i=1

φ2
i .

(25)

Multiplying (25) by e2θt and integrating it from 0 to t, it
yields

E{V (e(t), t, u)}≤V (e(0), r(0))e−2θt+
1− e−2θt

2θ
κ

N∑
i=1

φ2
i .

Noticing ∥e(t)∥2κ ≤ E{V (e(t), t, u)}, we have

∥e(t)∥ ≤

√
V (e(0), r(0))

κ
e−θt +

√
1− e−2θt

√
κ
∑N

i=1 φ
2
i

2θκ
.

If sampling instant Tk → ∞, then t→ ∞ and the error system
(10) converges exponentially into a ball M at a convergence
rate θ. This completes the proof.

Remark 9. It should be mentioned that multiple Lyapunov
functionals (15) are explicitly constructed to deal with the
quasi-synchronization of heterogeneous networks with gen-
eralized Markovian switching topologies and event-triggered
communication, which leads to a less conservative result than
the single Lyapunov functional method. Moreover, the designed
multiple Lyapunov functionals can be more complicated than
(15). However, it will be more challenging to calculate the
weak infinitesimal operator when more complicated Lyapunov
functional is applied.

Remark 10. It is challenging to achieve exponential quasi-
synchronization in a heterogeneous network with generalized
Markovian topology. Compared with the results presented in
references [18], [19], [21], [25], Theorem 1 presents an
explicit expression of the error bound. However, it should be
pointed out that the quasi-synchronization criterion provided
in our paper are dependent on the solvability of some high
dimensional matrix inequalities, which may be inapplicable
to switching heterogeneous networks of huge size.

Due to the existence of the nonlinear terms JT
1lX

−1
l J1l

and JT
2lY

−1
l J2l, the matrix inequality (14) may be difficult

to be solved. To compute more conveniently, the following
Corollary 2 is addressed instead of Theorem 1, where the
sufficient condition is presented in terms of LMIs that can
be easily solved numerically.

Corollary 2. Suppose the generalized Markovian switching
heterogeneous network has limited control efficiency E0 gov-
erned by (13). For given scalars σi > 0, φi > 0, hl > 0,
βl ∈ (0, 1) and

∑m
l=1 βl = 1, where i = 1, 2, · · · , N ,

l = 1, 2, · · · ,m, under Assumption 1 and Assumption 2, the
trajectory of the error system (10) converges exponentially
into a ball M at a convergence rate θ and M = {e(t) ∈

RNn : ∥e(t)∥ ≤ ϖ} as t → ∞, where ϖ =
√

κ
∑N

i=1 φ2
i

2θκ ,
if there exist positive definite matrices P (u) ≻ 0, R(u) ≻ 0,
u ∈ S, Ql ≻ 0, Xl ≻ 0, Yl ≻ 0, and matrices J1l, J2l with
appropriate dimensions such thatΩ(u) ⋆ ⋆

ϑlJ1l −ϑlXl ⋆
ϑlJ2l 0 −ϑlYl

 ≺ 0. (26)

Proof. Since βl ∈ (0, 1), l = 1, 2, · · · ,m and
∑m

l=1 βl = 1,
we can rewrite (14) into the following form:

m∑
l=1

βl[Ω(u) + ϑlJ
T
1lX

−1
l J1l + ϑlJ

T
2lY

−1
l J2l] ≺ 0.

For all l = 1, 2, · · · ,m, if we let

Ω(u) + ϑlJ
T
1lX

−1
l J1l + ϑlJ

T
2lY

−1
l J2l ≺ 0, (27)

it can be seen that (14) holds. By the Schur complement lem-
ma, (27) is equivalent to (26). This completes the proof.

IV. NUMERICAL EXAMPLES

Numerical examples are provided in this section to demon-
strate the effectiveness of the proposed design scheme.

Example 1. Suppose that a heterogeneous network consists
of three dynamical nodes described by (1), where xi(t) =
[xi1(t), xi2(t), xi3(t)]

T , f(xi(t)) = [|xi1+1|−|xi1−1|, 0, 0]T ,
i = 1, 2, 3 and

B1 =

−3 1 0
1 −2 1
0 0 0.1

 , B2 =

−3 1 0
1 −2 1
0 0 −0.1

 ,
B3 =

−3 1 0
1 −2 1
0 0.1 0

 , B =

−3 1 0
1 −2 1
0 0 0

 .
The dynamics of virtual leader s(t) = [s01(t), s02(t), s03(t)]

T

satisfies the equation (3).

In this numerical example, the graph topologies are gov-
erned by a generalized Markov process r(t) ∈ S = {1, 2},
where the transition rate π11 = −1, π12 = 1, π21 = 1,
π22 = −1 for t ∈ [Tk, Tk+1). The switching topology of the
network is shown in Fig. 4, where the Laplacian matrix can
be given as follows

L(1) =

 2 0 −2
−1 1 0
0 −1 1

 , L(2) =

 0 0 0
−1 1 0
−2 0 2

 .

1

32

1

2 3

Mode 1 Mode 2

1
2

1

1
2

Fig. 4. Switching topology of the network in Example 1.
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According to the proposed pinning strategy, we know that
any of the three nodes can be selected as the pinning node in
mode 1 and node 1 is the pinning node in mode 2. Without loss
of generality, we choose node 2 as pinning node in mode 1.
Assume that the heterogeneous network has limited control
efficiency E0 = 5. Then we have A0(1) = diag{0, 5, 0}
and A0(2) = diag{5, 0, 0}. Based on the condition (13) in
Corollary 1, we choose the coupling strength as c = 2 and
inner coupling matrix Γ = diag{6, 6, 6}. In this way, we
obtain all the parameters in (9).

In simulation, the trajectory of virtual leader node is given
by (3) with s(0) = [−45.7167, 1.4624,−30.0280]T and the
initial states of nodes are selected as follows:

x1(0) = [35.8114, 7.8239,−41.5736]T ,

x2(0) = [−29.2207,−45.9492,−15.5741]T ,

x3(0) = [46.4288,−34.9129,−43.3993]T .

Adopting the stochastic sampling on interval [0.009, 0.01] with
a uniform distribution, the state trajectories of the virtual
leader node and network nodes can be obtained as shown
in Figs. 5-7, which indicate that the quasi-synchronization
in generalized Markovian switching network is achieved by
using the proposed design method. In Fig. 8, the events of
each node under the proposed event-triggered approach are
marked within the time interval [0, 1.6], from which we can
see that the sampling is sporadic rather than at every time
instant, especially in later part of the time.

Define ∥e(t)∥ =
√∑3

i=1 ∥xi(t)− s(t)∥2 as the quasi-
synchronization error. We depict the corresponding simulated
errors at different time t (i.e., the evolution of ∥e(t)∥) as
shown in Fig. 9. For the parameters adopting in Example 1,
according to Corollary 2, one can obtain that the theoretical
error bound ϖ = 3.8987. From Fig. 9, it can be seen that the
nodes in switching network and the virtual leader are quasi-
synchronized within the prescribed error bound ϖ = 3.8987
when t > 0.3, which indicates that a good performance and
a fast convergence rate have been yielded by utilizing the
proposed design method.
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Fig. 5. State trajectories of s01(t), x11(t), x21(t), x31(t) in Example 1.

To compare the proposed control method versus the dis-
tributed impulsive control, we simulate distributed impulsive
control by setting the impulsive interval be [0.009, 0.01] with
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Fig. 6. State trajectories of s02(t), x12(t), x22(t), x32(t) in Example 1.
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Fig. 7. State trajectories of s03(t), x13(t), x23(t), x33(t) in Example 1.
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Fig. 8. Event-triggering times of node 1, node 2 and node 3 in Example 1.
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11

a uniform distribution. Extensive simulations of distributed
impulsive control were carried out in [24] but only on time-
invariant heterogenous networks. The state trajectories of
the virtual leader node and network nodes are plotted in
Figs. 10-12, which show that quasi-synchronization can also
be achieved by distributed impulsive control. From Fig. 13,
we can see that the impulse happens at every time instant
and the events of each node are triggered at every time
instant, since there is no event-triggered strategy in distributed
impulsive control. Indeed, the proposed event-trigger control is
asynchronous control, while the distributed impulsive control
is synchronous control which requires time synchronization
among nodes. Fig. 14 shows that the nodes in switching
network and the virtual leader are quasi-synchronized within
the prescribed error bound when t > 0.6, which indicates a
slower convergence rate than the proposed control method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−50

−40

−30

−20

−10

0

10

20

30

40

50

t

 

 

s
01

(t)

x
11

(t)

x
21

(t)

x
31

(t)

Fig. 10. State trajectories of s01(t), x11(t), x21(t), x31(t) via distributed
impulsive control.
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Fig. 11. State trajectories of s02(t), x12(t), x22(t), x32(t) via distributed
impulsive control.

Example 2. We compare the proposed method versus the
event-triggered method [51] on a homogeneous Markovian
switching network. Suppose the homogeneous network con-
sists of three identical nodes described by (1), where Bi =
B = 0, xi(t) = [xi1(t), xi2(t), xi3(t)]

T , f(xi(t)) = sin(xi),
i = 1, 2, 3. The dynamics of the virtual leader s(t) =
[s01(t), s02(t), s03(t)]

T satisfies that ṡ(t) = f(s(t)).

In this numerical example, the setting of simulation (the
switching graph topologies, pinning nodes, pinning feedback
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Fig. 12. State trajectories of s03(t), x13(t), x23(t), x33(t) via distributed
impulsive control.
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Fig. 13. Event-triggering times of node 1, node 2 and node 3 via distributed
impulsive control.

gains, and initial values) is identical to that of Example 1.
The results of simulation are depicted in Figs. 15-17. The
state trajectories of the virtual leader node and network nodes
are present in Fig. 15, which shows that the homogeneous
Markovian switching network can be completely synchronized
by the proposed design method. In Fig. 16, the events of each
node under the proposed event-triggered approach are marked
in the time interval [0, 0.8]. We can see that the sampling
is sporadic rather than every time instant. Finally, Fig. 17
presents the evolution of the corresponding simulated errors in
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Fig. 14. Evolution of quasi-synchronization error e(t) via distributed impul-
sive control.
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Example 2. The red dot line denotes the evolution of ∥e(t)∥
by the event-triggered method of [51] and the cyan dot line
denotes the evolution of ∥e(t)∥ by the proposed method. It
can be observed that a faster convergence rate is yielded by
the proposed method.

0 0.1 0.2 0.3 0.4 0.5 0.6
−50

−40

−30

−20

−10

0

10

20

30

40

50

t

 

 

s
01

(t)

s
02

(t)

s
03

(t)

x
11

(t)

x
12

(t)

x
13

(t)

x
21

(t)

x
22

(t)

x
23

(t)

x
31

(t)

x
32

(t)

x
33

(t)

Fig. 15. State trajectories of s(t) = [s01(t), s02(t), s03(t)]T , xi(t) =
[xi1(t), xi2(t), xi3(t)]

T , i = 1, 2, 3
in Example 2.
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Fig. 16. Event-triggering times of node 1, node 2 and node 3 in Example 2.
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Fig. 17. Evolution of quasi-synchronization error e(t) in Example 2.

V. CONCLUSION

In this paper, quasi-synchronization in a generalized Marko-
vian switching heterogeneous network via stochastic sampling

and event-triggered control was studied. First, we proposed a
pinning strategy algorithm to determine how many and which
nodes should be pinned in a generalized Markovian switching
heterogeneous network. For the case where a network has
limited control efficiency to get feasible pinning feedback
gains, a condition has been provided to choose the coupling
strength and the inner coupling matrix. Based on stochastic
Lyapunov-Krasovskii stability theory and matrix inequalities
technique, sufficient conditions giving an explicit expression
of the quasi-synchronization error bound have been derived
such that heterogeneous networks with generalized Markovian
switching topologies can achieve quasi-synchronization expo-
nentially under our stochastic event-triggering mechanism. The
problems of achieving event-triggered output synchronization
and designing distributed pinning schemes for switching het-
erogeneous networks will be investigated in our future studies.

APPENDIX A
PROOF OF COROLLARY 1

Proof. Choose the following Lyapunov function

V (t) =
1

2

N∑
i=1

eTi (t)ei(t).

The derivative of V (t) along the trajectories of (12) can be obtained
as follows

V̇ (t) =
N∑
i=1

eTi (t)Bei(t) +
N∑
i=1

eTi (t)fe(ei(t), t)

− c
N∑
i=1

N∑
j=1

lij(u)e
T
i (t)Γej(t)− c

N∑
i=1

ai0(u)e
T
i (t)Γei(t)

=

N∑
i=1

eTi (t)He(
1

2
B)ei(t) +

N∑
i=1

eTi (t)fe(ei(t), t)

− c

n∑
j=1

αj ê
T
j (t)He(

1

2
L(u))êj(t)− c

n∑
j=1

αj ê
T
j (t)A0(u)êj(t)

≤
N∑
i=1

eTi (t)He(
1

2
B)ei(t) +

N∑
i=1

γ̄eTi (t)ei(t)

− c

n∑
j=1

αj ê
T
j (t)He(

1

2
L(u))êj(t)− c

n∑
j=1

αj ê
T
j (t)A0(u)êj(t)

≤
n∑

j=1

êTj (t)

{
(λmax{

1

2
He(B)}+ γ̄)IN

− cαj [
1

2
He(L(u)) +A0(u)]

}
êj(t),

where êj(t) = [ej1(t), e
j
2(t), · · · , e

j
N (t)]T ,

∑N
i=1 e

T
i (t)ei(t) =∑n

j=1 ê
T
j (t)êj(t), and ej1(t), e

j
2(t), · · · , e

j
N (t) denote the jth ele-

ment of the column vectors e1(t), e2(t), · · · , eN (t), respectively.
According to (13), we have V̇ (t) < 0 and it implies that the

error network (12) under limited control efficiency can be stable.
This completes the proof.
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